Well-posedness of distribution dependent SDEs with singular drifts

نویسندگان

چکیده

Consider the following distribution dependent SDE: dXt=?t(Xt,?Xt)dWt+bt(Xt,?Xt)dt, where ?Xt stands for of Xt. In this paper non-degenerate ?, we show strong well-posedness above SDE under some integrability assumptions in spatial variable and Lipschitz continuity ? about b ?. particular, extend results Krylov–Röckner (Probab. Theory Related Fields 131 (2005) 154–196) to case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak differentiability of solutions to SDEs with semi-monotone drifts

‎In this work we prove Malliavin differentiability for the solution to an SDE with locally Lipschitz and semi-monotone drift‎. ‎To prove this formula‎, ‎we construct a sequence of SDEs with globally Lipschitz drifts and show that the $p$-moments of their Malliavin derivatives are uniformly bounded‎.

متن کامل

On Well - Posedness of Forward – Backward Sdes — a Unified Approach

In this paper, we study the well-posedness of the Forward–Backward Stochastic Differential Equations (FBSDE) in a general non-Markovian framework. The main purpose is to find a unified scheme which combines all existing methodology in the literature, and to address some fundamental longstanding problems for non-Markovian FBSDEs. An important device is a decoupling random field that is regular (...

متن کامل

Well-posedness of a singular balance law

We define entropy weak solutions and establish well-posedness for the Cauchy problem for the formal equation ∂tu(t, x) + ∂x u 2 (t, x) = −λu(t, x) δ0(x), which can be seen as two Burgers equations coupled in a non-conservative way through the interface located at x = 0. This problem appears as an important auxiliary step in the theoretical and numerical study of the one-dimensional particle-in-...

متن کامل

Well-Posedness of Scalar Conservation Laws with Singular Sources

We consider scalar conservation laws with nonlinear singular sources with a concentration effect at the origin. We assume that the flux A is not degenerated and we study whether it is possible to define a well-posed limit problem. We prove that when A is strictly monotonic then the limit problem is well-defined and has a unique solution. The definition of this limit problem involves a layer whi...

متن کامل

Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators

The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in Banach spaces C 0 (β,γ) (E α-β ) of all E α-β -valued continuous functions φ(t) on [0, T] satisfying a Höld...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2021

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/20-bej1268